Part Number Hot Search : 
AD554404 LTP747E BZG03C47 AN801 T373A 2SK295 TDA1519C TLPGE
Product Description
Full Text Search
 

To Download TL431Z Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431Z/AZ /CZ
PROGRAMMABLE PRECISION REFERENCES
The TL431Z is three-terminal adjustable shunt regulator with specified termal stability. The output voltage may be set to any value between VREF(Approx. 2.5V) and 36V with two external resistors. This device has a typical output inpedance of 0.2. Active output circuitry provides a very sharp turn-on characteristic, making this device excellent replacement for zener diodes in many application.
TO-92 PKG
3.Cathode 2.Anode 1.Reference
SOT-23 PKG
2.Anode
1.Reference
3.Cathode
FEATURES
Equivalent Full Range Temperature Coefficient 50PPM/ Temperature Compensated For Operation Over Full Rate Operating Temperature Range Adjustable Output Voltage Fast Turn-on Response Sink Current Capability 1 to 100 Low (0.2 Typ.) Dynamic Output Impedance Low Output Noise ORDERING INFORMATION
Device TL431Z TL431-AZ TL431-CZ TL431ZSF TL431-AZSF TL431-CZSF Marking TL431Z TL431-AZ TL431-CZ 431
* Packing label is different as Vref
Package TO-92
SOT-23
FUNCTION BLOCK DIAGRAM
BLOCK DIAGRAM
REFERENCE
CATHODE
CATHODE(K)
2.5VREF
REFERENCE(R)
ANODE(A) ANODE
Jan. 2007 - Rev 1.0
HTC
1
PROGRAMMABLE PRECISION SHUNT REGULATOR
EQUIVALENT SCHEMATIC
TL431Z/AZ /CZ
- All component values are nominal
RECOMMENDED OPERATING CONDITIONS
CHARACTERISTIC Cathode Voltage Cathode Current SYMBOL VKA IK MIN. VREF 1 MAX. 36 100 UNIT V
DISSIPATION RATING TABLE1-FREE-AIR TEMPERATURE
Package TO-92 SOT-23 TA=25 Power Rating 770 230 Derating Factor Above TA=25 6.2/ 1.8/ TA=70 TA=85 TA=125
Power Rating Power Rating Power Rating 398 491 149 122 -
Jan. 2007 - Rev 1.0
HTC
2
PROGRAMMABLE PRECISION SHUNT REGULATOR
ABSOLUTE MAXIMUM RATINGS
(Full Operating Ambient Temperature Range Applies Unless Otherwise Noted) CHARACTERISTIC Cathode Voltage Continuous Cathode Current Range Reference Input Current Range Junction Temperature Operating Temperature Storage Temperature Thermal Resistance Junction to Ambient SYMBOL VKA IKA IREF TJ TOPR TSTG RATING 37 -100 ~ +150 2~4 150 -40 ~ 85 -65 ~ 150 TO-92 PKG = 178 SOT-23 PKG = 625
TL431Z/AZ /CZ
UNIT V /W
JA
TL431Z ELECTRICAL CHARACTERISTICS
CHARACTERISTIC Reference Input Voltage Deviation of Reference Input Voltage Over Full Temperature Range Ratio of Change in Reference Input Voltage to the Change in Cathod Voltage Reference Input Current Deviation of Reference Input Current Over Full Temperature Range Minimum Cathode Current for Regulation Off-State Cathode Current Dynamic Impedance IKAMIN 1 VKA=VREF IREF/T 2 IREF 2
VREF/VKA
(TA=25, unless otherwise specified)
TEST CONDITION MIN. 2.440 TYP. 2.495 MAX. 2.550 UNIT V
SYMBOL CIR-CUIT VREF 1
VKA=VREF, IK=10 VKA=VREF, IK=10
VREF/T
1
TA=Full Range
3
17
VKA=10V-V REF 2 IK=10 VKA=36V-10V IKA=10, R1=10, R2= IK=10, R1=10, R2= TA=Full Range
-1.4
-2.7 /V
-1 2.0
-2 4
0.4
1.2
0.4
1
IKAOFF
3
VKA=36V, V REF=0
0.1
1
ZKA
1
VKA=VREF, IK=1~100, f1
0.2
0.5
Jan. 2007 - Rev 1.0
HTC
3
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431Z/AZ /CZ
TL431AZ ELECTRICAL CHARACTERISTICS
CHARACTERISTIC Reference Input Voltage Deviation of Reference Input Voltage Over Full Temperature Range Ratio of Change in Reference Input Voltage to the Change in Cathod Voltage Reference Input Current Deviation of Reference Input Current Over Full Temperature Range Minimum Cathode Current for Regulation Off-State Cathode Current Dynamic Impedance SYMBOL CIR-CUIT VREF 1
VREF/T
(TA=25, unless otherwise specified)
MIN. 2.470 TYP. 2.495 3 MAX. 2.520 17 UNIT V
1
TEST CONDITION VKA=VREF, IK=10 VKA=VREF, IK=10 TA=Full Range VKA=10V-V REF
-1.4 -1 2.0 0.4
-2.7 /V -2 4 1.2
VREF/VKA
2
IK=10 VKA=36V-10V IKA=10, R1=10, R2= IK=10, R1=10, R2= TA=Full Range VKA=VREF VKA=36V, V REF=0 VKA=VREF, IK=1~100, f1
IREF IREF/T
2 2
IKAMIN IKAOFF ZKA
1 3 1
0.4 0.1 0.2
1 1 0.5

TL431CZ ELECTRICAL CHARACTERISTICS
CHARACTERISTIC Reference Input Voltage Deviation of Reference Input Voltage Over Full Temperature Range Ratio of Change in Reference Input Voltage to the Change in Cathod Voltage Reference Input Current Deviation of Reference Input Current Over Full Temperature Range Minimum Cathode Current for Regulation Off-State Cathode Current Dynamic Impedance
IKAMIN IKAOFF ZKA IREF/T IREF VREF/VKA VREF/T
(TA=25, unless otherwise specified)
TEST CONDITION MIN. 2.482 TYP. 2.495 3 MAX. 2.508 17 UNIT V
SYMBOL CIR-CUIT
VREF
1 1
VKA=VREF, IK=10 VKA=VREF, IK=10 TA=Full Range
VKA=10V-V REF 2 IK=10 VKA=36V-10V 2 2 IKA=10, R1=10, R2= IK=10, R1=10, R2= TA=Full Range VKA=VREF VKA=36V, V REF=0 VKA=VREF, IK=1~100, f1
-1.4 -1 2.0 0.4
-2.7 /V -2 4 1.2
1 3 1
0.4 0.1 0.2
1 1 0.5

Jan. 2007 - Rev 1.0
HTC
4
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431Z/AZ /CZ
Fig. 1 Test Circuit for V
KA =V REF
Fig. 2 Test Circuit for V
KA V REF
INPUT
IKA
VKA
INPUT
IKA
VKA
R1 DUT
REF
DUT
VREF
R2
VREF VKA=VREF(1+R1/R2)+IREF R1
Fig. Test Circuit for IKA off)
INPUT IKA VKA
DUT
Jan. 2007 - Rev 1.0
HTC
5
PROGRAMMABLE PRECISION SHUNT REGULATOR
TL431Z/AZ /CZ
The deviation parameters V REF(DEV) and IREF(DEF) are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, V REF, is defined as : Maximum V REF V I(dev) 6 x10 ppm VREF at 25 VREF = TA VI(dev) Minimum V REF TA
Where : TA is the recommended operating free-air temperature range of the device.
VREF can be positive or negative, depending on whether minimum V REF or maximum V REF, respectively, occurs at the lower temperature.
Example : Maximum V REF=2496 at 30, maximum VREF=2492 at 0, VREF=2495 at 25, TA=70 for TL431CZ 4 x106 ~ 23PPM/ 2495 ~ 70
VREF=
Because minimum V REF occurs at the lower temperature, the coefficient is positive. Calculating Dynamic Impedance The dynamic impedance is defined as : ZKA= VKA IKA
When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit is given by : V I ~ZKA 1+ R1 ~ R2
Z'=
Figure 1. Calculating deviation parameters and dynamic impedance
Jan. 2007 - Rev 1.0
HTC
6
PROGRAMMABLE PRECISION SHUNT REGULATOR
TYPICAL PERFORMANCE CHARACTERISTICS
REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 2600 2580 2560 2540 VREF-REFERENCE VOLTAGE2520 VREF=2495 2500 2480 2460 VREF=2440 2440 2420 2400 -75 -50 -25 0 25 50 75 100 125 0 -75 -50 -25 0 25 VREF=2500 4 VREF-REFERENCE VOLTAGE5 R1=10 R2= IKA=10
TL431Z/AZ /CZ
REFERENCE CURRENT vs FREE-AIR TEMPERATURE
3
2
1
50
75
100
125
TA-FREE-AIR TEMPERATURE-
TA-FREE-AIR TEMPERATURE-
Data is applicable only within the recommended operating free-air temperature ranges of the various devices. Data is for devices having the indicated value of REF at IKA=10, V TA=25
Data is applicable only within the recommended operating free-air temperature ranges of the various devices.
Figure 4.
CATHODE CURRENT vs CATHODE VOLTAGE 150 125 100 IKA-CATHODE CURRENT75 50 25 0 -25 -50 -75 -100 -2 -1 0 1 2 3 -200 -1 0 0 IKA-CATHODE CURRENTVKA=VREF TA=25 600 800 VKA=VERF TA=25
Figure 5.
CATHODE CURRENT vs CATHODE VOLTAGE
IMIN
400
200
1
2
3
VKA-CATHODE VOLTAGE-V
VKA-CATHODE VOLTAGE-V
Figure 6.
Figure 7.
Jan. 2007 - Rev 1.0
HTC
7
PROGRAMMABLE PRECISION SHUNT REGULATOR
TYPICAL PERFORMANCE CHARACTERISTICS
OFF-STATE CATHODE CURRENT vs FREE-AIR TEMPERATURE 2.5 VKA=36 V 2 IOFF-OFFSTATE CATHODE CURRENT -0.95 -0.85 VKA=3V TO 36V
TL431Z/AZ /CZ
RATIO DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE vs FREE-AIR TEMPERATURE
1.5
VREF/V -/V KA -75 -25 0 25 50 75 100 125
-1.05
-1.15
1 -1.25
0.5 -1.35
0 -50
-1.45 -75 -50 -25 0 25 50 75 100 125
TA-FREE-AIR TEMPERATURE-
TA-FREE-AIR TEMPERATURE-
Data is applicable only within the recommended operating free-air temperature ranges of the various devices.
Data is applicable only within the recommended operating free-air temperature ranges of the various devices.
Figure 8.
EQUIVALENT INPUT NOISE VOLTAGE VS FREQUENCY 260 240 VIN-EQUIVALENT NOISE VOLTAGE- 220 IO=10 TA=25
Figure 9.
200
180
160
140
120 100 10 100 1K f-FREQUENCY- 10K 100K
Figure 10.
Jan. 2007 - Rev 1.0
HTC
8
PROGRAMMABLE PRECISION SHUNT REGULATOR
TYPICAL PERFORMANCE CHARACTERISTICS
19.1V 1
TL431Z/AZ /CZ
500 910 2000 VCC VCC TL2027 AV=10V/ + 820 16 0.1 33 910 VEE VEE AV=2V/V 160 + 16 16 1 33 TL2027 22 1 TO OSCILLOSCOPE
TL431 (DUT)
Figure 11. Test Circuit for Equivalent Input Noise Voltage
SMALL-SIGNAL VOLTAGE AMPLIFICATION VS FREQUENCY 60 AV-SMALL-SIGNAL VOLTAGE AMPLIFICATIO IKA=10 TA=25 50
15
40
IKA
OUTPUT 232
9
30
+ 8.25 -
~
20
GND
10
Test Circuit for Voltage Amplification
0 1K 10K 100K f-FREQUENCY- 1M 10M
Figure 12.
Jan. 2007 - Rev 1.0
HTC
9
PROGRAMMABLE PRECISION SHUNT REGULATOR
TYPICAL PERFORMANCE CHARACTERISTICS
TL431Z/AZ /CZ
REFERENCE IMPEDANCE VS FREQUENCY 100 IKA=10 TA=25
1
ZKA-REFERENCE IMPEDANCE
OUTPUT
10
~
50 +
IKA
1
GND
Test Circuit for Reference Impedance
0.1 1K 10K 100K f-FREQUENCY- 1M 10M
Figure 13.
REFERENCE IMPEDANCE VS FREQUENCY 6 TA=25 5 INPUT
220 OUTPUT PULSE GENERATOR f=100
OUTPUT
ZKA-REFERENCE IMPEDANCE
4
50
3
2
GND
1
Test Circuit for Pulse Response
0 -1 0 1 2 3 4 5 6 7
t-TIME-
Figure 14.
Jan. 2007 - Rev 1.0
HTC
10
PROGRAMMABLE PRECISION SHUNT REGULATOR
APPLICATION INFORMATION
R (SEE NOTE A) VI(BATT) R1 0.1% VREF R2 0.1% RETURN TL431 VO =1+ VO
TL431Z/AZ /CZ
R1 VREF R2
NOTE A : R Should provide cathode current1 to the TL431 at minimum VI(BATT) Figure 15. Shunt Regulator
VI(BATT)
TL431 INPUT VIT ~ 2.5V ~
VO VON ~ 2.5V ~ VOFF ~ VI(BATT) ~ GND
Figure 16. Single-Supply Comparator With Temperature-Compensated Threshold
VI(BATT)
R (SEE NOTE A)
2N222 2N222
30 4.7 0.01 TL431 R2 0.1% R1 0.1%
VO =1+
R1 V REF R2
VO
NOTE A : R Should provide cathode current1 to the TL431 at minimum VI(BATT) Figure 17. Precision High-Current Series Regulator
Jan. 2007 - Rev 1.0
HTC
11
PROGRAMMABLE PRECISION SHUNT REGULATOR
APPLICATION INFORMATION
VI(BATT) IN LM7805 COMMON TL431 R2 OUT R1 VO =1+ VO
TL431Z/AZ /CZ
R1 V R2 REF
MINIMUM V O=VREF+5V
Figure 18. Output Control of a 3-Terminal Fixed Regulator
VI(BATT) R1
VO
VO =1+ R2 RETURN TL431
R1 V R2 REF
Figure 19. High-Current Shunt Regulator
VI(BATT) R1 TL431
VO
R2
C (SEE NOTE A)
NOTE A : Refer to the stability boundary conditions in Figure 16 to determine allowable values for C. Figure 20. Crowbar Circuit
Jan. 2007 - Rev 1.0
12
HTC
PROGRAMMABLE PRECISION SHUNT REGULATOR
APPLICATION INFORMATION
TL431Z/AZ /CZ
VI(BATT)
IN 8.2
LM317
OUT 243 0.1%
VO ~ 5V, 1.5A ~
Adjust
TL431 243 0.1%
Figure 21. Precision 5-V 1.5A Regulator
VI(BATT) RB (SEE NOTE A) VO ~ 5V ~ 27.4 0.1% TL431 27.4 0.1%
NOTE A : RB Should provide cathode current1 to the TL431. Figure 22. Efficient 5-V Precision Regulator
12V
6.8 5V 10 10 0.1% TL431 10 0.1% + X NOT USED TL598
FEED BACK
Figure 23. PWM Converter With Reference
Jan. 2007 - Rev 1.0
13
HTC
PROGRAMMABLE PRECISION SHUNT REGULATOR
APPLICATION INFORMATION
TL431Z/AZ /CZ
R3 (SEE NOTE A) VI(BATT) R1A TL431 R1B OUT R4 (SEE NOTE A) LOW LIMIT= 1+ R1B VREF R2B HIGH LIMIT= 1+ R1A VREF R2A R2A R2B LED ON WHEN LOW LIMITNOTE A : R3 and R4 are selected to provide the desired LED intensity and cathode current 1 to the TL431 at the available VI(BATT). Figure 24. Voltage Monitor
650 12V R 2
TL431 DELAY=RxCxI N ( ON OFF C
12V 12V-VREF
Figure 25. Delay Timer
RCL 0.1% VI(BATT) R1 TL431
IO IOUT =
VREF RCL + IKA VI(BATT) + IKA IO HFE
R1 =
Figure 26. Precision Current Limiter
Jan. 2007 - Rev 1.0
14
HTC
PROGRAMMABLE PRECISION SHUNT REGULATOR
APPLICATION INFORMATION
TL431Z/AZ /CZ
VI(BATT) IO
IO = TL431 RS 0.1%
VREF RS
Figure 27. Precision Constant-Current Sink
Jan. 2007 - Rev 1.0
15
HTC


▲Up To Search▲   

 
Price & Availability of TL431Z

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X